我们如何准确推荐用户在家中控制其设备的操作?智能家居的行动建议因其对虚拟助手和物联网(IoT)市场的潜在影响而引起了越来越多的关注。但是,为智能家庭设计有效的动作推荐系统是具有挑战性的,因为它需要处理上下文相关性,考虑到查询的上下文和以前的用户历史,并处理历史上的反复无常意图。在这项工作中,我们提出了Smartsense,这是一种准确的智能家居建议方法。对于个人动作,Smartsense以自我煽动的方式总结了其设备控制及其时间上下文,以反映它们之间相关性的重要性。 SmartSense然后总结了以查询方式考虑查询上下文的用户序列,以从顺序操作中提取与查询相关的模式。 Smartsense还将常识知识从常规数据转移到更好地处理动作序列中的意图。结果,Smartsense解决了针​​对Smart Home的所有三个主要挑战,并实现了比最佳竞争对手高达9.8%的地图的最先进性能。
translated by 谷歌翻译
给定图表具有部分观察到节点特征,我们如何准确估计缺失功能?特征估计是分析现实图表的关键问题,其特征在数据收集过程中通常缺少。准确的估计不仅提供了节点的多种信息,而且还支持需要全面观察节点特征的图形神经网络的推断。但是,设计一种估计高维特征的有效方法是具有挑战性的,因为它要求估算器具有较大的表示能力,从而增加过度拟合的风险。在这项工作中,我们提出了SVGA(结构化变分图自动编码器),这是一种精确的特征估计方法。 SVGA通过结构化变异推断将强固体化应用于潜在变量的分布,该变量推断将变量的先前作为基于图结构的高斯马尔可夫随机字段建模。结果,SVGA结合了概率推理和图形神经网络的优势,在实际数据集中实现了最新性能。
translated by 谷歌翻译
Understanding the informative structures of scenes is essential for low-level vision tasks. Unfortunately, it is difficult to obtain a concrete visual definition of the informative structures because influences of visual features are task-specific. In this paper, we propose a single general neural network architecture for extracting task-specific structure guidance for scenes. To do this, we first analyze traditional spectral clustering methods, which computes a set of eigenvectors to model a segmented graph forming small compact structures on image domains. We then unfold the traditional graph-partitioning problem into a learnable network, named \textit{Scene Structure Guidance Network (SSGNet)}, to represent the task-specific informative structures. The SSGNet yields a set of coefficients of eigenvectors that produces explicit feature representations of image structures. In addition, our SSGNet is light-weight ($\sim$ 55K parameters), and can be used as a plug-and-play module for off-the-shelf architectures. We optimize the SSGNet without any supervision by proposing two novel training losses that enforce task-specific scene structure generation during training. Our main contribution is to show that such a simple network can achieve state-of-the-art results for several low-level vision applications including joint upsampling and image denoising. We also demonstrate that our SSGNet generalizes well on unseen datasets, compared to existing methods which use structural embedding frameworks. Our source codes are available at https://github.com/jsshin98/SSGNet.
translated by 谷歌翻译
For change detection in remote sensing, constructing a training dataset for deep learning models is difficult due to the requirements of bi-temporal supervision. To overcome this issue, single-temporal supervision which treats change labels as the difference of two semantic masks has been proposed. This novel method trains a change detector using two spatially unrelated images with corresponding semantic labels such as building. However, training on unpaired datasets could confuse the change detector in the case of pixels that are labeled unchanged but are visually significantly different. In order to maintain the visual similarity in unchanged area, in this paper, we emphasize that the change originates from the source image and show that manipulating the source image as an after-image is crucial to the performance of change detection. Extensive experiments demonstrate the importance of maintaining visual information between pre- and post-event images, and our method outperforms existing methods based on single-temporal supervision. code is available at https://github.com/seominseok0429/Self-Pair-for-Change-Detection.
translated by 谷歌翻译
Zero-shot quantization is a promising approach for developing lightweight deep neural networks when data is inaccessible owing to various reasons, including cost and issues related to privacy. By utilizing the learned parameters (statistics) of FP32-pre-trained models, zero-shot quantization schemes focus on generating synthetic data by minimizing the distance between the learned parameters ($\mu$ and $\sigma$) and distributions of intermediate activations. Subsequently, they distill knowledge from the pre-trained model (\textit{teacher}) to the quantized model (\textit{student}) such that the quantized model can be optimized with the synthetic dataset. In general, zero-shot quantization comprises two major elements: synthesizing datasets and quantizing models. However, thus far, zero-shot quantization has primarily been discussed in the context of quantization-aware training methods, which require task-specific losses and long-term optimization as much as retraining. We thus introduce a post-training quantization scheme for zero-shot quantization that produces high-quality quantized networks within a few hours on even half an hour. Furthermore, we propose a framework called \genie~that generates data suited for post-training quantization. With the data synthesized by \genie, we can produce high-quality quantized models without real datasets, which is comparable to few-shot quantization. We also propose a post-training quantization algorithm to enhance the performance of quantized models. By combining them, we can bridge the gap between zero-shot and few-shot quantization while significantly improving the quantization performance compared to that of existing approaches. In other words, we can obtain a unique state-of-the-art zero-shot quantization approach.
translated by 谷歌翻译
We study the compute-optimal trade-off between model and training data set sizes for large neural networks. Our result suggests a linear relation similar to that supported by the empirical analysis of Chinchilla. While that work studies transformer-based large language models trained on the MassiveText corpus (gopher), as a starting point for development of a mathematical theory, we focus on a simpler learning model and data generating process, each based on a neural network with a sigmoidal output unit and single hidden layer of ReLU activation units. We establish an upper bound on the minimal information-theoretically achievable expected error as a function of model and data set sizes. We then derive allocations of computation that minimize this bound. We present empirical results which suggest that this approximation correctly identifies an asymptotic linear compute-optimal scaling. This approximation can also generate new insights. Among other things, it suggests that, as the input space dimension or latent space complexity grows, as might be the case for example if a longer history of tokens is taken as input to a language model, a larger fraction of the compute budget should be allocated to growing the learning model rather than training data set.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
Traversability estimation for mobile robots in off-road environments requires more than conventional semantic segmentation used in constrained environments like on-road conditions. Recently, approaches to learning a traversability estimation from past driving experiences in a self-supervised manner are arising as they can significantly reduce human labeling costs and labeling errors. However, the self-supervised data only provide supervision for the actually traversed regions, inducing epistemic uncertainty according to the scarcity of negative information. Negative data are rarely harvested as the system can be severely damaged while logging the data. To mitigate the uncertainty, we introduce a deep metric learning-based method to incorporate unlabeled data with a few positive and negative prototypes in order to leverage the uncertainty, which jointly learns using semantic segmentation and traversability regression. To firmly evaluate the proposed framework, we introduce a new evaluation metric that comprehensively evaluates the segmentation and regression. Additionally, we construct a driving dataset `Dtrail' in off-road environments with a mobile robot platform, which is composed of a wide variety of negative data. We examine our method on Dtrail as well as the publicly available SemanticKITTI dataset.
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
We consider local kernel metric learning for off-policy evaluation (OPE) of deterministic policies in contextual bandits with continuous action spaces. Our work is motivated by practical scenarios where the target policy needs to be deterministic due to domain requirements, such as prescription of treatment dosage and duration in medicine. Although importance sampling (IS) provides a basic principle for OPE, it is ill-posed for the deterministic target policy with continuous actions. Our main idea is to relax the target policy and pose the problem as kernel-based estimation, where we learn the kernel metric in order to minimize the overall mean squared error (MSE). We present an analytic solution for the optimal metric, based on the analysis of bias and variance. Whereas prior work has been limited to scalar action spaces or kernel bandwidth selection, our work takes a step further being capable of vector action spaces and metric optimization. We show that our estimator is consistent, and significantly reduces the MSE compared to baseline OPE methods through experiments on various domains.
translated by 谷歌翻译